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Abstract: The arithmetic graph Vn is defined as a graph with its vertex set is the set con-

sists of the divisors of n (excluding 1) where n is a positive integer and n = p
a1
1 p

a2
2 p

a3
3 . . . par

r

where p′

is are distinct primes and ai’s > 1 and two distinct vertices a, b which are not of the

same parity are adjacent in this graph if (a, b) = pi, for some i, 1 ≤ i ≤ r . In this paper,

we study some results related to the connectivity κ of an arithmetic graph. It is also shown

that, the edge connectivity κ
′

and the connectivity κ are equal in arithmetic graph Vn.
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§1. Introduction

By a graph G = (V, E ), we mean a finite undirected connected graph without loops or multiple

edges. The order and size of G are denoted by ν and ǫ respectively. We consider connected

graphs with at least three vertices. For basic definitions and terminologies we refer to [2].

The arithmetic graph Vn is defined as a graph with its vertex set is the set consists of the

divisors of n (excluding1) where n is a positive integer and n = pa1
1 p

a2
2 p

a3
3 . . . par

r where p′is are

distinct primes and a′is > 1 and two distinct vertices a,b which are not of the same parity are

adjacent in this graph if (a, b) = pi for some i, 1 ≤ i ≤ r. The vertices a and b are said to be

of the same parity if both a and b are the powers of the same prime, for instance a = p2, b =

p5. The construction of an arithmetic graph with a given integer was introduced and studied

by Vasumathi and Vangipuram in [4]. The domination parameters of an arithmetic graph were

further studied by various authors in [3].

Connectivity is one of the basic concepts of graph theory. It is closely related to the theory

of network flow problems. In an undirected graph G, two vertices u and v are called connected

if G contains a path from u to v. Otherwise, they are called disconnected. A graph is said to

be connected if every pair of vertices in the graph is connected. The degree of a vertex v in

a graph G is the number of edges of G incident with v and is denoted by degG(v) or d(v).

A vertex of degree zero in G is called an isolated vertex and a vertex of degree one is called

a pendent vertex or an end-vertex of G. The maximum and minimum degree of a graph G
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is denoted by ∆(G) and δ(G) respectively. A cut-vertex (cut-edge) of a graph G is a vertex

(edge) whose removal increases the number of components. A vertex cut, or separating set of a

connected graphG is a set of vertices whose removal renders G disconnected. The connectivity

or vertex connectivity κ(G) is the number of vertices of a minimal vertex cut. A graph is

called k-connected or k-vertex-connected if its vertex connectivity is k or greater. Any graph

G is said to be k-connected if it contains at least k +1 vertices, but does not contain a set of

k − 1 vertices whose removal disconnects the graph and κ(G) is defined as the largest k such

thatG is k -connected. An edge cut of G is a set of edges whose removal renders the graph G

disconnected. The edge-connectivity κ
′

(G) is the number of edges of a minimal edge cut. A

graph is said to be maximally connected if its connectivity equals its minimum degree. A graph

is said to be maximally edge-connected if its edge-connectivity equals its minimum degree. For

vertices u and v in a connected graph G, the distance d (u, v) is the length of a shortest u v

path in G. Two vertices u and v of G are antipodal if d(u,v) = diam G or d(G). A vertex v

is an extreme vertex of a graph G if the subgraph induced by its neighbors is complete. The

following theorems are used in sequel.

Theorem 1.1 ([2]) For a connected graph G, κ(G) 6 κ
′

(G) 6 δ(G).

Theorem 1.2 ([2]) A connected graph is a tree if and only if every edge is a cut edge.

Theorem 1.3 ([2]) A vertex v of a tree G is a cut vertex of G if and only if d(v) >1.

Theorem 1.4 ([1]) it The number of vertices of an arithmetic graphG = Vn, n = pa1

1 p
a2

2 p
a3

3 · · · par
r

where p′is are distinct primes, are [(a1 + 1)(a2 + 1) · · · (ar + 1)] − 1.

§2. Main Results

Theorem 2.1 For an arithmetic graph G = Vn, n = pa1
1 p

a2
2 where p1 and p2 are distinct

primes and ai = 1 for all i = 1, 2; then the connectivity and the edge connectivity numbers are

equal to 1.

Proof Consider the arithmetic graphG = Vn , where n is the product of two distinct primes.

The vertex set of Vn contains three vertices namely p1, p2, p1 × p2.Clearly the arithmetic graph

Vn is a tree containing two end vertices and an internal vertex. By theorem 1.3, the end vertices

p1 and p2 are not cut vertices. It is clear that the internal vertex p1 × p2 is the only cut vertex

of Vn. Hence connectivity number κ(Vn) = 1. Also by theorem 1.2, every edge of Vn is a cut

edge and hence the edge connectivity number κ
′

(Vn) = 1. 2
Theorem 2.2 For an arithmetic graph G = Vn, n = pa1

1 p
a2
2 where p1 and p2 are distinct

primes, then

κ(Vn) = κ
′

(Vn) =







1 for ai = 1 & aj > 1; i, j = 1, 2,

2 for ai > 1; i = 1, 2.

Proof Consider the arithmetic graph G = Vn, where n is the product of two distinct
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primes.

Case 1. ai = 1 and aj > 1; i, j = 1, 2.

The vertex set of Vn is V (Vn) =
{
p1, p

2
1, p

3
1, · · · , p

aj

1 , p2, p1 × p2, p
2
1 × p2, · · · , paj

1 × p2

}
.

Clearly p1 and p2 are adjacent to the vertices p1 × p2, p
2
1 × p2, ..., p

aj

1 × p2, so that d(p1) > 1

and d(p2) > 1. The vertices p2
1, p

3
1, ..., p

aj

1 are non adjacent to each other and are adjacent to

exactly one vertex p1 × p2 since otherwise it contradicts the definition of an arithmetic graph.

Therefore d(p2
1) = d(p3

1) = · · · = d(p
aj

1 ) = 1. Since the graph has no isolated vertices, the

minimum degree of the graph is one. Hence by theorem 1.1, κ(G) ≤ κ
′

(G) ≤ δ(G) = 1. Hence

it is clear that, κ(Vn) = 1 = κ
′

(Vn) .

Case 2. ai > 1; i = 1, 2.

In this case the vertex set of Vn is V (Vn) = {{p1, p2, p
2
1, p

2
2, p

3
1, · · · , pa1

1 , p
a2
2 , p1 × p2, p

2
1 ×

p2, · · · , pa1
1 × p2, p1 × p2

2, p1 × p3
2, · · · , pa1

1 × pa2
2 } . By the definition of an arithmetic graph, p1

and p2 are adjacent to the vertices p1 × p2, p
2
1 × p2, · · · , pa1

1 × p2, p1 × p2
2, p1 × p3

2, · · · , pa1
1 × pa2

2 .

Therefore we have d(p1) > 1 and d(p2) > 1. Since the arithmetic graph is free from isolated

vertices, d(v) > 0 for all v ∈ V (Vn). The vertices p2
1, p

3
1, · · · , pa1

1 which are in the product of

themselves with many times (till the maximum power) are adjacent to at least the vertices

p1 × p2, p1 × p2
2,· · · ,p1 × pa2

2 and the vertices p2
2, p

3
2, · · · , pa2

2 are adjacent to at least the vertices

p1 × p2,p
2
1 × p2, · · · , pa1

1 × p2 hence its degrees are greater than one. Also, the vertices which

are in the combination of two distinct primes have at least the vertices p1 and p2 are adjacent.

Therefore δ(Vn) ≥ 2. But the vertex pa1
1 × pa2

2 is adjacent to exactly the two vertices p1 and

p2, since otherwise it contradicts definition. Hence we find that δ(Vn) = 2. By theorem 1.1,

κ(G) ≤ κ
′

(G) ≤ δ(G) = 2. Let S = {p1, p2} be the set of vertices which are adjacent to

pa1
1 × pa2

2 . Clearly the deletion of S from Vn, isolates the vertex pa1
1 × pa2

2 . Hence κ(Vn) = 2.

Also, by theorem 1.1, it is clear that κ
′

(Vn) 6 δ(Vn) = 2. Since d(pa1
1 × pa2

2 ) = 2, the removal

of two edges incident at this vertex disconnects the graph. Hence κ
′

(Vn) = 2. 2
Theorem 2.3 For an arithmetic graph G = Vn, n = pa1

1 p
a2
2 · · · par

r where pi, i = 1, 2, · · · , r
(r > 2) are distinct primes and ai = 1 for all i = 1, 2, · · · , r then κ(Vn) = κ

′

(Vn) = r.

Proof Consider the arithmetic graph G = Vn, where n is the product of more than two

distinct primes and a
′

is are equal to 1. By result 1.4, the arithmetic graph Vn contains 2r − 1

vertices. Among the 2r−1 vertices, the vertex p1×p2×· · ·×pr is adjacent to exactly r vertices

namely p1, p2, · · · , pr. Therefore d(p1 × p2 × · · · × pr) = r. Suppose it is adjacent to more

than r vertices. Then there exists a vertex vi 6= pi, which is adjacent to p1 × p2 × · · · × pr

and hence (p1 × p2 × · · · × pr, vi) 6= pi which contradicts the definition of an arithmetic graph.

So d(p1 × p2 × · · · × pr) = r. Also we can easily seen that the minimum degree δ(Vn) = r.

By theorem 1.1, it is observe that κ(Vn) 6 r. To prove κ(Vn) = r. Suppose κ(Vn) < r. Let

S = {p1, p2, · · · , pr−1} be the vertex cut of Vn such that |S| 6 r − 1. If S is deleted from Vn

then it is easily seen that the vertex pr is adjacent to at least the vertex p1 × p2 × · · · × pr

and the vertex pi × pj is adjacent to either p1 × p2 × · · · × pi−1 × pj × pj+1 × · · · × pr or

p1 × p2 × · · · × pi × pj−1 × pj+1 × · · · × pr and the vertex pi × pj × pk is adjacent to either

p1 × p2 × · · · × pi−1 × pj−1 × pk × · · · × pr or p1 × p2 × ... × pi × pj−1 × pk−1 × · · · × pr or
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p1 × p2 × · · · × pi−1 × pj × pk−1 × · · · × pr and so on. This implies that the induced graph

〈Vn − S〉 is connected. Therefore we need at least r vertices to disconnect the graph. But the

deletion of S ∪ {pr}, the graph is disconnected. Hence κ(Vn) = r.

Also, by Theorem 1.1 it is clear that κ
′

(Vn) 6 δ(Vn). Since δ(Vn) = r, we have κ
′

(Vn) 6 r.

Since d(p1 × p2 × · · · × pr) = r, the removal of r edges incident at the vertex p1 × p2 × · · · pr,

the graph Vn is disconnected and it is clear that the edge cut of Vn contains exactly r edges

namely p1 × p2 × · · · × prp1, p1 × p2 × · · · × prp2, · · · p1 × p2 × · · · × prpr. Therefore κ
′

(Vn) = r

and hence κ(Vn) = κ
′

(Vn) = r. 2
Theorem 2.4 For an arithmetic graph G = Vn, n = pa1

1 p
a2
2 · · · par

r where p1, p2, · · · , pr are

distinct primes and a
′

is ≥ 1 for all i = 1, 2, 3, · · · , r and pi > 2 then κ(Vn) = κ
′

(Vn) = r.

Proof We prove the theorem by considering the following four cases.

Case 1. All the a
′

is, i = 1, 2, 3, · · · r are equal to one.

In this case we follow Theorem 2.3 and arrived the result.

Case 2. Some of the a
′

is are equal to one and the others are greater than 1.

Consider the vertex set of Vn as V (Vn) = {p1, p2, · · · , pr, p1×p2, · · · , pa1
1 ×pa2

2 ×· · ·×par
r } .

Let the last vertex be pa1
1 ×pa2

2 ×· · ·×par
r say v1, where a

′

is are the maximum powers of the given

distinct primes. By the definition of an arithmetic graph, we see that the only vertices which

are adjacent to v1 are p1, p2, · · · , pr. Hence d(v1) = r. Also the minimum degree of Vn occurs

at the vertex v1. That is, δ(Vn) = r = d(v1). By theorem 1.1, κ(Vn) = κ
′

(Vn) 6 δ(Vn) = r.

But the removal of r vertices adjacent to v1 makes the graph disconnected. Hence we obtained

the result κ(Vn) = r. The edge connectivity κ
′

(Vn) = r is same as Theorem 2.3.

Case 3. All the a
′

is are equal and greater than 1.

Here also consider the last vertex of V (Vn), say pa1
1 × pa2

2 × · · · × par
r where the a

′

is are the

maximum power of given distinct primes. By the definition of an arithmetic graph, it is clear

that p1, p2, · · · , pr are the only vertices which are adjacent to the vertex pa1
1 × pa2

2 × . . . .× par
r .

The remaining proof is similar to Case 2

Case 4. All the a
′

is are distinct and greater than one.

Consider the last vertex in the vertex set of Vn, say pa1

1 ×pa2

2 ×· · · .×par
r where the a

′

is are

the maximum power of the given distinct primes. By the definition of an arithmetic graph, this

vertex is adjacent to exactly r vertices namely p1, p2, p3, · · · , pr. Suppose it is adjacent to any

other vertex except pi then it contradicts the definition of an arithmetic graph. The remaining

proof is similar to Case 2. 2
Corollary 2.5 For an arithmetic graph G = Vn, n = pa1

1 p
a2
2 · · · par

r where p1, p2, · · · , pr are

distinct primes and a
′

is ≥ 1 for all i = 1, 2, 3, · · · , r the connectivity number and the edge

connectivity number are equal.

Proof It is obvious from Theorems 2.1, 2.2, 2.3 and 2.4. 2
Remark 2.6 The arithmetic graph Vn is a maximally connected graph.
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Example 2.7 Consider the arithmetic graph G = V60. since 60 = 22 × 3 × 5. The vertex set

of G is V (V60) = {2, 3, 5, 22, 2 × 3, 2 × 5, 3 × 5, 22 × 3, 22 × 5, 2 × 3 × 5, 22 × 3 × 5}. Clearly the

vertex cut and edge cut of G is S = {2, 3, 5} and S1 = {22 × 3 × 52, 22 × 3 × 53, 22 × 3 × 55}
respectively. Hence κ(G) = κ

′

(G) = δ(G) = 3.

b
b

b

b

b

b

b

b

b

b

b

3

5

2 x 3

2 x 5

3 x 5

2 x 3 x 5

22

22 x 3

22 x 5

22 x 3 x 5
2

Figure 1 Arithmetic graph G = V60

Conclusion

From the above theorems, it is clear that the connectivity number, the edge connectivity number

and the minimum degree of the given arithmetic graph are equal. Also, if the given integer n

is the product of more than two distinct primes then κ(Vn) and κ
′

(Vn) depend on the number

of distinct primes and they do not depend upon the powers of primes.
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